

Diffraction at the Tevatron

XXXIII International Conference on High Energy Physics Moscow :: 28 July 2006

Introduction

introduction

outline
DØ plans
CDF inclusive
intro
results
CDF exclusive
intro
e+eγγ
dijet
summary

Diffraction: An exchange with the quantum numbers of the vacuum.

Goals of Diffractive Program at the Tevatron:

- Understand the nature of diffractive exchange
- Test the feasibility of diffraction as a tool to search for new physics at the LHC

Outline

introduction

outline

DØ plans

CDF inclusive

intro

results

CDF exclusive

intro

e⁺e⁻

ΥΥ

dijet

summary

Diffraction at DØ:

physics plans

Inclusive Diffraction at CDF:

- ratio of SD/ND dijets
- Q² dependence of t in SD dijets

Exclusive Production at CDF:

- two mechanisms (QED and QCD)
- searches for QED mediated e⁺e⁻
- searches for QCD mediated γγ and dijets

Summary

Diffraction at DØ

Diffractive Analyses in Progress at DØ:

introduction outline

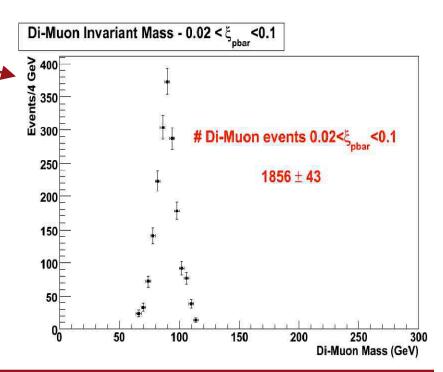
DØ plans

CDF inclusive intro results
CDF exclusive

CDF exclusive intro
e+eγγ
dijet
summary

Double Pomeron Exchange (DPE) + Jets

Diffractive Structure Function


Diffractive Heavy Flavor

Exclusive Production

• Diffractive Z

Diffractive W

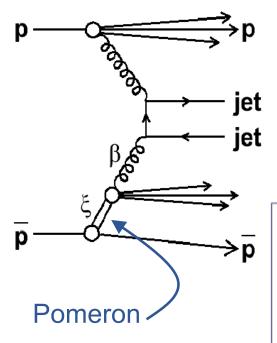
Inclusive DPE

Inclusive Diffraction at CDF

introduction outline DØ plans

CDF inclusive intro

results


CDF exclusive

intro

e⁺e

dijet

summary

Use high p_T jets as a probe to measure **Diffractive Structure Function**, F_{ij}^{D}

Experimental Determination of F_{ii}^{D}

$$R(x_{Bj}) \text{ of } \frac{\sigma_{jj}(SD)}{\sigma_{jj}(ND)} = \frac{F_{jj}^{D}(x_{Bj}, Q^{2})}{F_{jj}(x_{Bj}, Q^{2})} \text{(LO QCD)}$$
Data
$$Known \text{ Proton PDF}$$

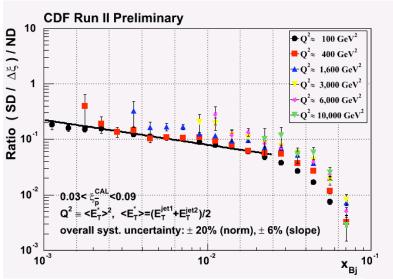
$$\beta = P_{parton} / P_{Pomeron}$$

$$\xi = P_{pomeron} / P_{proton}$$

$$t = (P_i - P_f)^2$$

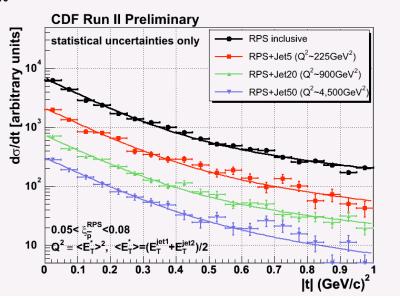
Inclusive Diffraction Results

introduction outline DØ plans


CDF inclusive intro results

CDF exclusive intro

e+e
γγ

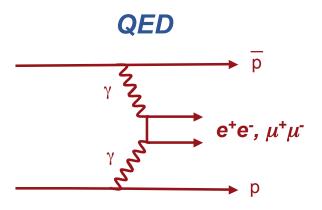

dijet

summary

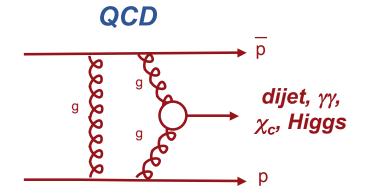
• Slope of d*o*/d*t* is independent of Q² in SD dijets

- No Q² dependence (100 < Q² < 10000 GeV²)
- The Pomeron evolves like the proton

Exclusive Production at CDF



introduction
outline
DØ plans
CDF inclusive
intro
results


CDF exclusive intro

e⁺e⁻ yy dijet summary

Exclusive Production: QED or QCD mediated

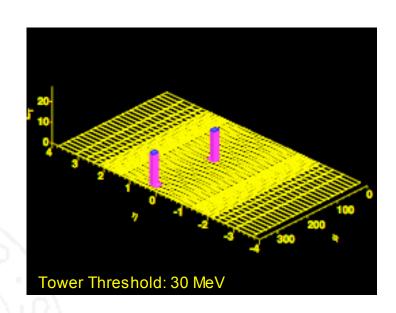
measure exclusive QED
 e⁺e⁻ and μ⁺μ⁻ production
 at Tevatron to test
 feasibility of Luminosity
 measurement at LHC

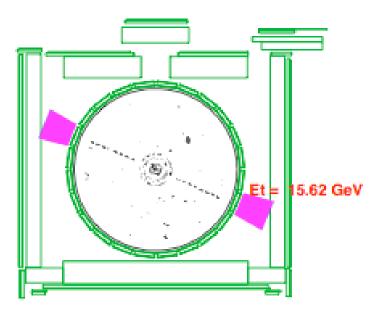
measure exclusive
 QCD dijet and γγ
 production at Tevatron
 to constrain predictions
 on exclusive Higgs at
 LHC

QED Mediated eter Production

introduction
outline
DØ plans
CDF inclusive

CDF exclusive


intro e⁺e⁻ γγ


dijet

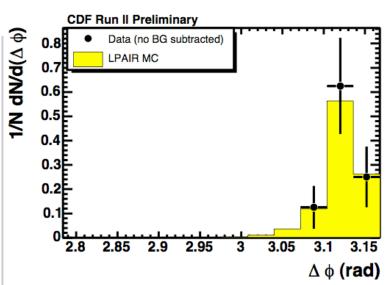
summary

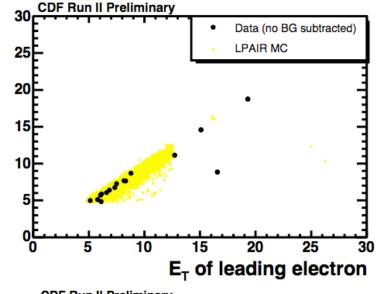
Exclusive e⁺e⁻ events are selected by:

- reconstructing the e⁺e⁻
- requiring that there is no other activity in $|\eta|$ <7.4
- protons are not tagged

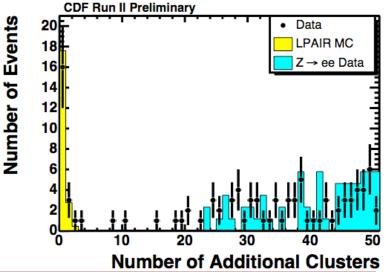
16 events similar are found.

QED Mediated ete Production


 $\mathsf{E}_{_{\mathsf{T}}}$ of second electron



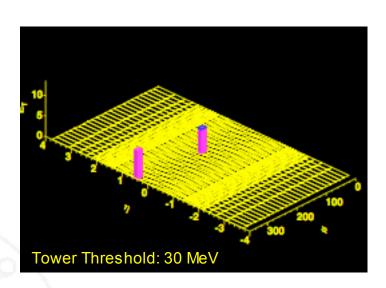
dijet

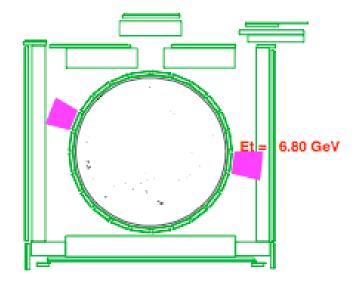

summary

Background estimate: 2.1+0.7-0.3

$$\sigma_{\rm exp}$$
 = 1.6 $^{+0.5}_{-0.3}$ (stat) +.0.3 (sys) pb $\sigma_{\rm LPAIR}$ = 1.711 ± 0.008 pb

QCD Mediated yy Production


introduction
outline
DØ plans
CDF inclusive
intro
results


CDF exclusive

intro e⁺e⁻ γγ dijet summary

Exclusive γγ events:

- selected in the same way as e⁺e⁻ (except tracking)
- agreement of exclusive e⁺e⁻ cross section gives confidence in analysis methodology

3 events are found.

1+3 events are predicted from ExHuME MC

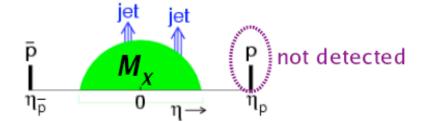
Monk & Pilkington. hep-ph/0502077

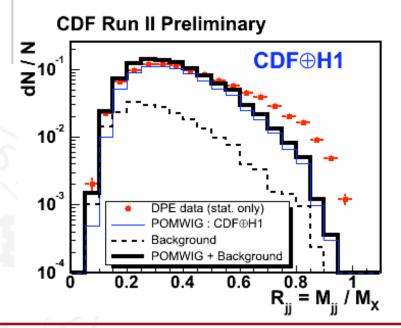
Background estimate is not yet complete

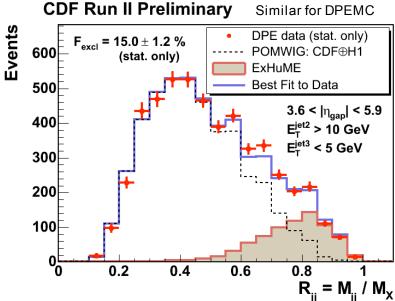
QCD Mediated Dijet Production

introduction outline DØ plans CDF inclusive

CDF exclusive


intro e⁺e⁻ γγ dijet


summary

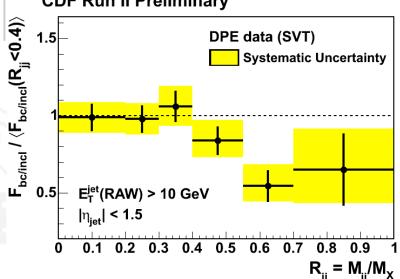

Strategy: •select DPE dijets: $\bar{p} + p \rightarrow \bar{p} + X (\geq 2jets + ...) + gap$

examine the dijet mass fraction R_{ii}

$$R_{jj} = \frac{M_{jj}}{M_X}$$

QCD Mediated Dijet Production

DØ plans CDF inclusive

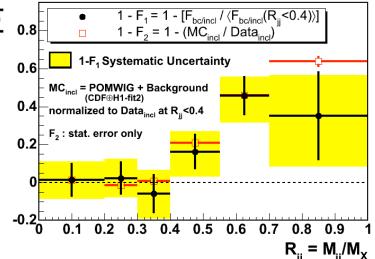

CDF exclusive

dijet

summary

e⁺e

CDF Run II Preliminary

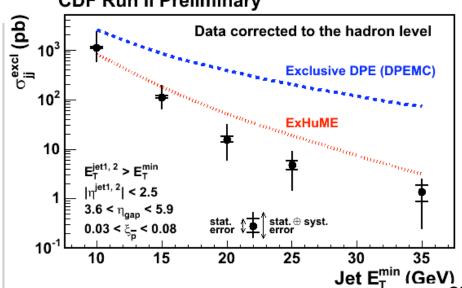

Another Observable:

b/c jets suppressed at high R_{ii}

- exclusive gg \rightarrow qq is suppressed by J_z =0 rule
- exploit this by looking at fraction of heavy flavor (b/c) jets in dijet data as a function of Rii

the two observables agree

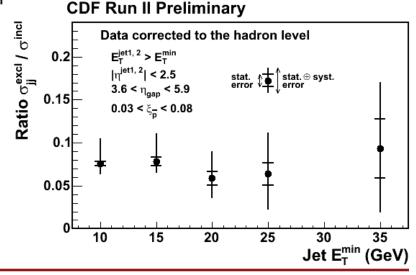
QCD Mediated Dijet Production



CDF Run II Preliminary

introduction DØ plans CDF inclusive CDF exclusive e⁺e

dijet


summary

How does the cross section compare?

The data favors ExHuME MC

Ratio of exclusive to inclusive DPE cross sections is flat.

Summary

introduction
outline
D∅ plans
CDF inclusive
intro
results
CDF exclusive
intro
e⁺e⁻
γγ
dijet

summary

Diffraction at DØ:

many analyses in progress

Inclusive Diffraction at CDF:

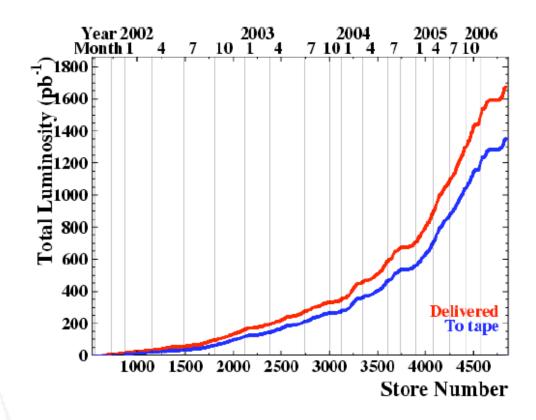
- Q² dependence of Diffractive Structure Function
- slope of SD dijet d σ /dt is independent of Q²

Exclusive Production at CDF:

- observed e+e- production via QED exchange
- possible evidence for γγ production via QCD exchange
- observed dijet production via QCD exchange
- KMR / ExHuME predictions are consistent with data
- see previous talk for impact KMR of predictions on the LHC

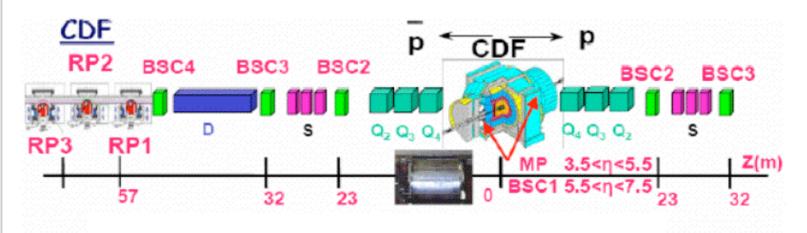
Backup Slides

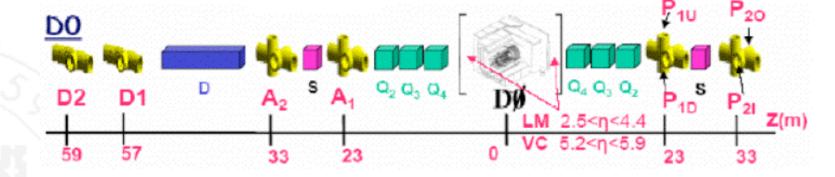
introduction
outline
D∅ plans
CDF inclusive
intro
results
CDF exclusive
intro
e⁺e⁻
γγ
dijet
summary


Backup Slides

Tevatron Luminosity

introduction
outline
DØ plans
CDF inclusive
intro
results
CDF exclusive
intro
e+eγγ
dijet
summary





Forward Detectors

introduction
outline
DØ plans
CDF inclusive
intro
results
CDF exclusive
intro
e+eγγ
dijet
summary

ee Numbers

introduction
outline
D∅ plans
CDF inclusive
intro
results
CDF exclusive
intro
e⁺e⁻
γγ
dijet

summary

$$\sigma = \frac{N_{\text{candidates}} - N_{\text{background}}}{\varepsilon_{\text{cosmic}} \varepsilon_{\text{fsr}} \varepsilon_{\text{ee}} \mathscr{L}_{\text{eff}}}$$

$$N_{\text{candidates}} = 16^{+5.1}_{-3.2} \text{ (stat)}$$
 $\varepsilon_{\text{fsr}} = 0.79 \pm 0.05 \text{ (sys)}$

$$N_{\text{background}} = 2.1^{+0.7}_{-0.3} \text{ (sys)}$$
 $\varepsilon_{\text{cosmic}} = 0.93 \pm 0.03 \text{ (sys)}$

$$\mathcal{L}_{\text{eff}} = 46 \pm 3 \text{ (sys) pb}^{-1} \qquad \varepsilon_{\text{ee}} = 0.26 \pm 0.03 \text{ (sys)}$$

$$\sigma_{\text{MEASURED}} = 1.6^{+0.5}_{-0.3} \text{ (stat)} \pm 0.3 \text{ (sys) pb}$$

Poisson probability of 2.8 \rightarrow 16 = 5.0×10⁻⁸ Corresponds to 5.4 σ "observation"

Agrees with LPAIR theory: $\sigma_{LPA/R} = 1.711 \pm 0.008 \text{ pb}$

ee Numbers

introduction
outline
DØ plans
CDF inclusive
intro
results
CDF exclusive
intro
e⁺e⁻
γγ
dijet

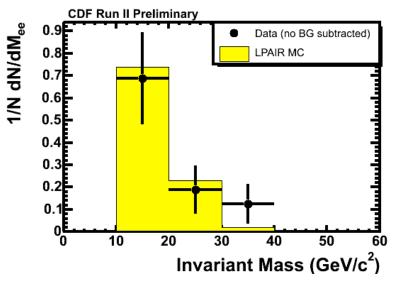
summary

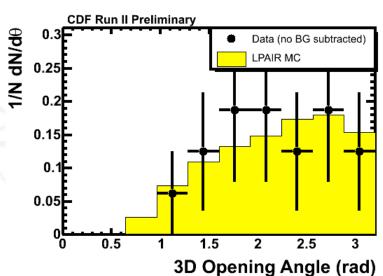
Fakes: $0.0^{+0.1}_{-0.0}$ events

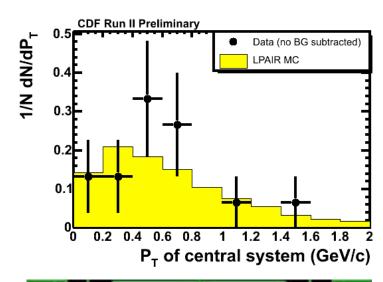
Cosmic: negligible

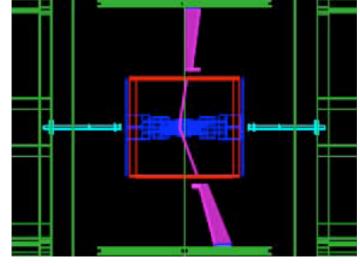
Exclusive: $0.0^{+0.3}_{-0.0}$ events

Dissociation: 2.1 ± 0.3 events


Total: $2.1^{+0.7}_{-0.3}$ events



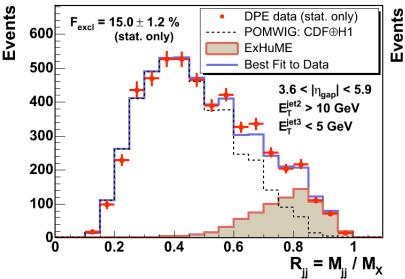

ee Plots



introduction
outline
DØ plans
CDF inclusive
intro
results
CDF exclusive
intro
e⁺e⁻
γγ
dijet
summary

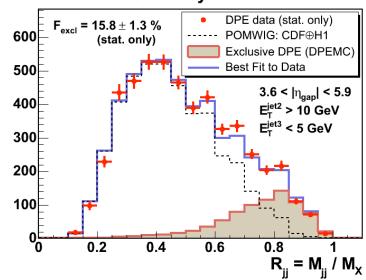
Dijet Plots

introduction
outline
DØ plans
CDF inclusive
intro
results
CDF exclusive
intro
e+eγγ
dijet
summary


DATASETS:

Exclusive / Inclusive fraction: 310 pb⁻¹

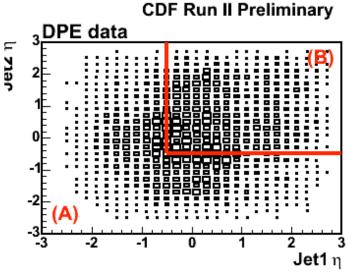
Heavy Flavor fraction: 200 pb⁻¹

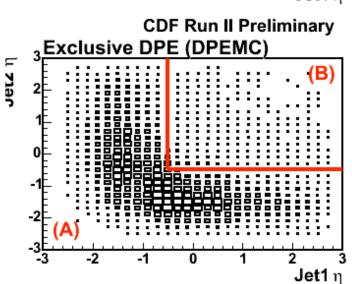

ExHuME

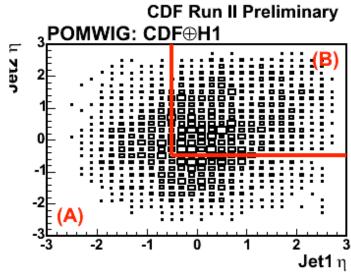
CDF Run II Preliminary

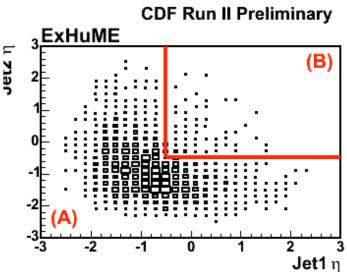
DPEMC

CDF Run II Preliminary

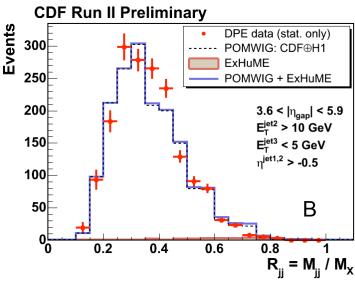


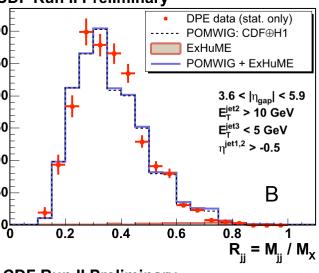


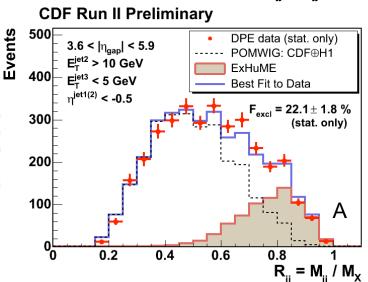

Dijet Plots

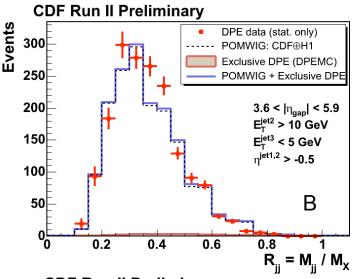


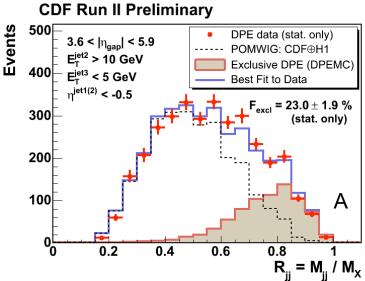
introduction
outline
DØ plans
CDF inclusive
intro
results
CDF exclusive
intro
e⁺e⁻
γγ
dijet
summary






et Plots




DØ plans **CDF** inclusive CDF exclusive e⁺e⁻ dijet summary

Dijet Cross Section

introduction
outline
DØ plans
CDF inclusive
intro
results
CDF exclusive
intro
e+eγγ
dijet
summary

CDF Run II Preliminary

 $E_T^{\text{jet1,2}} > E_T^{\text{min}} \text{ GeV}, |\eta^{\text{jet1,2}}| < 2.5, 3.6 < \eta_{\text{gap}} < 5.9, 0.03 < \xi_{\bar{p}} < 0.08, \text{ all } t_{\bar{p}}$

E_T^{\min}	σ incl	σ excl	σ excl/ σ incl
10	14.5±0.1 ^{+9.8} _{-6.9} nb	1.10±0.04 ^{+1.29} _{-0.54} nb	7.6±0.3 ^{+2.9} %
15	$1.43\pm0.02^{+0.89}_{-0.62}$ nb	112±7 ⁺⁸⁴ ₋₄₉ pb	$7.8\pm0.5^{+3.2}_{-1.2}$ %
20	$267\pm6^{+166}_{-110}$ pb	$15.7 \pm 2.0^{+15.5}_{-9.6}$ pb	$5.9\pm0.8^{+3.0}_{-2.1}$ %
25	$76.0\pm2.7^{+37.0}_{-28.6}$ pb	$4.84\pm0.96^{+4.11}_{-3.28}$ pb	6.4±1.3 ^{+4.6} _{-3.9} %
35	$14.6 \pm 1.2^{+5.3}_{-5.2} \mathrm{pb}$	$1.37\pm0.49^{+1.08}_{-1.01}$ pb	$9.3\pm3.4^{+6.9}_{-6.6}$ %

(stat. + syst. errors)